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Increased fracture toughness of ceramics by 
energy- dissipative mechanisms 

W. K R E H E R ,  W. POMPE 
Akademie der Wissenschaften der DDR, Zentralinstitut for Festkdrperphysik und 
Werkstofforschung, DDR-8027 Dresden, East Germany 

A theoretical model for the fracture toughness of ceramics is developed which takes 
into account such energy-dissipative mechanisms as stress-induced microcracking or phase 
transformation. To establish the general fracture criterion, a Griffith-type energy balance 
is employed. This energy balance comprises the elastic energy, the fracture surface work 
consumed in the process zone at the crack tip, the energy dissipated in the dissipation 
zone and the energy stored by residual stresses. Stress-induced microcracking is con- 
sidered in more detail. An expression for the dependence of the fracture toughness on the 
density of microcracks, the amount of residual stresses caused by thermal expansion 
mismatch between the ceramic matrix and small particles embedded in it and the volume 
fraction of these particles is derived. The final results are used to state conditions necessary 
for the fracture toughness to be increased. The theory agrees well with experimental 
results taken from literature (alumina with zirconia particles). 

1. Introduction 
It is well known that ceramics are brittle materials. 
As a result, failure in ceramics is often catastrophic 
and this is the main draw-back of most ceramics; 
because of this much scientific work has been per- 
formed in order to develop strong, tough ceramics. 
The different mechanisms which could be used to 
achieve this goal have been reviewed, for example, 
by Evans et  al. [1] and Lange [2]. 

In this paper energy-dissipative mechanisms are 
dealt with. Such a mechanism acting in front of a 
crack tip is capable of absorbing energy that is 
otherwise available for crack propagation. Two 
examples of this may be found in the ceramic 
literature: stress-induced microcracking and stress- 
induced phase transformation. 

The original idea concerning microcracking as 
an energy-absorption mechanism was first formu- 
lated by Glucklich and Cohen [3] who considered 
a concrete-type material. The same idea was used 
by Gupta [4] and Green et  al. [5] in an attempt to 
explain the resistance to thermal shock, and the 
fracture behaviour, of partially-stabilized zirconia 
(PSZ). Hoagland et  al. [6] examined the influence 
of microstructure on fracture propagation in rock. 

They found that microcracking may have a con- 
siderable influence on the resistance to crack 
propagation. More recently, Claussen [7, 8] has 
used the idea of stress-induced microcracking to 
explain the increased fracture toughness observed 
if unstabilized zirconia is added to alumina. 

Energy absorption by stress-induced phase 
transformation was originally utilized to increase 
the toughness of certain steels (so-called TRIP 
steels). Concerning ceramics, Garvie etal .  [9] 
suggested that the high toughness of caMa-PSZ 
ceramics containing tetragonal zirconia resulted 
from absorption of energy dudiag the martensitic 
transformation of tetragonal particles to mono- 
clinic ones. Such PSZ ceramics, stabilized by 
yttria, calcia or magnesia, were also considered 
by Porter and Heuer [10], Gupta et  al. [11, 12] 
and Lange [2, 13]. 

Recently some theoretical work concerning 
energy-dissipative mechanisms has been published. 
There exist different approaches. Let us first discuss 
those which are based on an energy concept. This 
concept is inspired by the analogy between the 
energy-dissipative mechanisms considered here 
and energy dissipation by plastic deformation. In 
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this way Antolovich [14] calculated the energy 
dissipated by phase transformation in TRIP steels. 
Gupta etal. [12] and Lange [2, 13] used the results 
of Antolovich in an attempt to determine the 
fracture toughness of  PSZ ceramics where stress- 
induced phase transformation occurs. Recently, 
Porter eta/. [ 15] published a paper which presents 
a detailed examination of energy absorption by 
phase transformation in PSZ ceramics. In the case 
of stress-induced microcracking, the energetic 
approach is also very suitable for studying the 
stability of  a macroscopic crack i.e. determining 
the fracture toughness. This has been done by the 
present authors [ 16-18].  

Contrary to the energetic approach, other 
calculations may be found in literature which are 
not based on a strict stability analysis. Therefore 
some ambiguities are involved in the definition of 
the critical point which governs the fracture tough- 
ness. For instance Evans etal. [1] have assumed 
that instability occurs if the density of stress- 
induced microcracks reaches a certain critical value 
in the vicinity of  the tip of a macrocrack. That 
means they neglect any Griffith-type instability 
prior to this point. The investigations of  Buresch 
[19-21 ] represent a more detailed examination o f 
stress-induced microcracking in alumina ceramics. 
Although some energy considerations are involved, 
the calculation of  the critical point, however, 
seems not to be quite correct since it is based on 
Neuber's two-parameter fracture criterion which 
is not equivalent to a stability analysis for a 
macrocrack interacting with a large number of 
microcracks. 

The above discussion has lent support to the 
opinion that only a strict stability analysis based 
on energy methods [12, 13, 17] can form a basis 
for theoretical considerations. Until now, how- 
ever, an important feature inherent to most 
ceramics has been neglected: the energy stored 
in residual stress fields. Although it is well known 
that, for instance, thermal stresses markedly affect 
the mechanical properties of ceramics (cf. Lange 
[2]), theories concerning energy dissipative mech- 
anisms which include such residual stresses are not 
yet available. The present paper is intended to 
make a contribution to this area of difficulty; a 
theoretical model will be developed which will 
describe the influence of energy-dissipative pro- 

cesses and residual stresses on the fracture tough- 
ness of ceramics. At first the general fracture 
criterion will be presented. Then we shall consider 
stress-induced microcracking in more detail as an 
example of an energy-dissipative mechanism. 

2. Energy criterion for crack propagation 
In this section a general expression for the fracture 
toughness, obtained by making a Griffith-type 
energy balance for crack propagation, is derived. 
In doing so account has to be taken of the release 
of elastic energy, the fracture surface work, the 
dissipated energy and the change of energy stored 
in residual stress fields. 

Consider a ceramic sample of unit thickness 
with a macroscopic plane crack of length l. When 
this sample is loaded, energy dissipation may 
occur in the vicinity of  the tip of  the macrocrack 
while in the remaining part of  the sample the 
material behaves elastically (Fig. 1). The character- 
istic length, rD, of  the region where energy is 
dissipated depends on the applied load (it will 
be determined later). We teml this region the 
"dissipation zone".* In this zone elastic energy 
is converted into heat, fracture surface energy of  
microcracks or energy connected with acoustic 
emissions or phase transformation. This amount 
of energy is denoted by U D. Simultaneously the 
residual stresses change, and hence the stored 
energy, say Us, must be included in the energy 
balance. 

We have to distinguish another zone. This is 
the region just ahead of the tip of the macrocrack 
where direct interaction processes are important. 
For instance coalescence with microcracks may 
occur in this zone when the macrocrack advances. 
We call this region the "process zone". The corre- 

Figure I Dissipation zone at the tip ofa macrocrack. 

*In the literature different names may be found for this e.g. "transformation zone", "process zone", "microcrack 
zone", "quasi-plastic zone". We prefer the general term "dissipation zone". 
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sponding characteristic parameter is represented 
by 3', the energy which is effectively consumed 
per unit area in creating a fracture surface at the 
tip of the macrocrack2 3' may be less than or 
greater than the true fracture surface energy, 3'0, 
of the material (e.g. coalescence with microcracks 
or branching may occur which will influence the 
effective fracture surface energy). 

The aim of this paper is to calculate the macro- 
scopic fracture toughness of  the ceramic material. 
That means that the stability of  the macrocrack 
must be examined. To this end an attempt could 
be made to solve the elastic problem for the 
macrocrack interacting with the elements of the 
dissipation zone (e.g. this zone may contain a 
large number of microcracks). Using this solution 
we could impose a small variation on the length of 
the macrocrack, thus investigating the stability. 
This is, however, an insoluble problem because the 
exact locations of  the microcracks are not known 
(to say nothing of the mathematical difficulties). 
In addition, some ambiguities are involved in the 
definition of crack advance because homogeneity 
in the direction parallel to the front of the macro- 
crack is no longer maintained. It is actually 
not necessary to consider all the microscopic 
processes in full detail, because the fracture tough- 
ness, which is obtained from an experiment on the 
macroscopic level, is governed by the average 
action of the local processes. That means, for the 
first step, it is appropriate to look upon the dissi- 
pation zone as a homogeneous region which can be 
described by average quantities as for example 
"dissipated energy per unit volume". In addition it 
can be assumed that this zone is small in size 
compared with the geometric dimensions of the 
sample such as notch length, unnotched specimen 
width andso on. This is equivalent to saying that 
the variation of the length of the macrocrack is 
large compared with the characteristic microscopic 
dimensions but still small compared with the 
length of the macrocrack itself. In ductile fracture 
mechanics, the situation envisioned has been 
termed "small-scale yielding". Thus the problem 
of investigating the stability of the macrocrack 
has been considerably simplified since merely 
some average properties of the dissipation zone 
entei into the stability analysis. Only in the 
second step (Section 3) will we relate the average 
properties to the microscopic features of  the 
ceramic material. 

Now let us examine the processes connected 

696 

with the variation d / o f  the length of the macro- 
crack. Within the small-scale yielding approach the 
release of elastic energy is equal to the loss of  
potential energy, - dP, such that 

- d R  = c dl, 0 )  

where G is the ordinary elastic energy release rate. 
In order to set up the balance of energy, we must 
compare the available energy in Equation 1 with 
the energy, ds necessary for crack extension 

d~ = 27 dl + dU D + dUs. (2) 

In this expression 27 dl is the fracture surface 
energy consumed in the process zone, dUD denotes 
the energy dissipated when the dissipation zone is 
shifted according to the extension of the macro- 
crack and dU s is the change of stored energy 
(normally, dU s is negative since stored energy is 
released). 

The critical value of the energy release rate, i.e. 
the fracture toughness Ge, is reached if the available 
energy in Equation 1 is equal to the necessary 
energy in Equation 2. This is identical to the 
statement that the variation of the total energy 
vanishes 

d P + d ~  = 0, (3) 

Making use of Equations 1 and 2 

G c = 2 7 + d U D +  dUs 
d---]- d--]- ( 4 ) 

is obtained. Here specific values for U D and U s 
may be introduced. Let a~n and r& denote the 
energy dissipated and stored, respectively, per unit 
volume. In general, r~ D and ~s may be functions of  
position, hence U D and U s can be written as 

vD = J  o(OdV, vs-- dV. (S) 

In this paper the transition zone which may exist 
at the boundary of the dissipation zone is neglected. 
That means it is approximately assumed that r~D(~ ) 
changes from 0 outside the dissipation zone to a 
constant value ~?D inside the zone. 

For the present let us look upon rID as a given 
material parameter which depends only on the 
features of the particular dissipation process to be 
considered. The same holds for the specific stored 
energy -~s(~) which changes from ~?so outside to ~2s 
inside the dissipation zone 0)sO denotes the energy 
which is stored in the material by residual stresses 
before loading). 

Now the increments dUD and dU~ may be 
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easily calculated by multiplying T/D and (r& -- r&o), 
respectively, by the newly-created volume of  the 
dissipation zone. In our case of  a small dissipation 
zone this volume is given by 2rD dl since the whole 
dissipation zone is shifted by an amount dl without 
changing its shape (cf. Fig. t). Thus we obtain 

d U  D = 2 r D r / D d I ;  

dUs = 2rD(r&-- 7?sO) dl. (6) 

With the help of  these results, Equation 4 may be 
rewritten as 

G~ = 23' + 2rD(rtD+ r&--nso).* (7) 

The size of  the dissipation zone rD can be calcu- 
lated in an analogous manner to the case of  plastic 
zones. Since it is sufficient to consider small-scale 
yielding, rD is given by 

GcEo 
r D = (X 2 (8) 

~e 

ae is a characteristic stress at which energy dissi- 
pation starts, Eo denotes Young's modulus of  the 
material and c~ is a constant which depends on the 
features of  the dissipation process. A reasonable 
choice is 

= ~ (9 )  

which is in accordance with results obtained for 
plastic zones (e.g. Rice [23]) or microcrack zones 
(Hoagland et al. [24])~ From Equations 7 and 8 we 
finally obtain 

Gc 7/70 
2% 1 - ( l O )  

[ 4/(2Eo) j 
In this formula the fracture toughness has been 
normalized by 23'0 which is the ordinary toughness 
of the material if there is no additional energy 
dissipation. 

Equation 10 represents a general expression for 
the fracture toughness provided that ~?D, 77s and 
77so are determined by material parameters and do 
not depend on the applied load or sample geometry. 
However, a final conclusion with regard to an 
increase in G c cannot be drawn from Equation 10 
since, for example, the formation of  microcracks 
and residual stresses may have a quite different 
influence on 3'/3'o, Z?D, ( % -  r/so) and oc. There- 

fore, in the next section, these parameters will be 
related to microstructural properties of  the ceramic 
material in order to decide whether the toughness 
increases or not. 

3. Energy dissipation by formation 
of microcracks 

Up to now the fracture process has only been con- 
sidered from a general point of  view. Now we 
come to the details of  the dissipation process. Let 
us look at a ceramic material consisting of  a matrix 
with small particles embedded in it (for example 
one may think of  alumina with zirconia particles). 
Suppose that stable microcracking appears in the 
matrix when the stress reaches a certain critical 
value. Microcracking means that a large number of  
small microcracks are formed starting from pre- 
existing flaws. For the sake of  simplicity these 
microcracks are assumed to be penny-shaped with 
a radius a. The existence of  this (finite) length a 
presupposes that the microcracks are stopped at 
some obstacles, such as grain boundaries, matrix- 
particle interfaces or by localized stress fields. 
This is an essential presupposition since otherwise 
the formation of  the first microcrack leads to 
instability of  the whole sample. 

Let ~F ~ denote the number of  microcracks per 
unit matrix volume. Then a dimensionless density 
of  microcracks p may be defined by 

p = ~F(2a) 3. (1 l) 

In this paper p is regarded as a given material- 
dependent constant which is determined by 
the microstmcture of  the ceramic material in 
question. 

The formation of  microcracks causes energy 
dissipation, since elastic energy is converted into 
fracture surface energy of  microcracks, energy of  
elastic waves and other irreversible transformations 
o f  the microstructure. However, in addition to 
that dissipated energy, the energy stored in residual 
stress fields enters into the general energy balance 
also (cf. Equation 4). This is an essential point, 
because we are going to investigate ceramic com- 
posites, in which residual stresses may act in two 
different ways. On the one hand, simultaneously 
with the formation of  microcracks, part of  the 
stored energy is released. On the other hand, 

*If a transit ion zone at the boundary  o f  the dissipation zone is taken into account ,  then  ~D, ~Ts and rtso have to be 
replaced by certain average values. A strict examinat ion  o f  this problem using finite element  me thods  will be given in 
[22]. 
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residual stresses cause a decrease in the critical 
stress %,  which is equivalent to a large dissipation 
zone (cf. Equation8). The former mechanism 
diminishes the effect of  energy dissipation whereas 
the latter one enhances it. In the following section 
the various quantities are considered in more 
detail. 

3.1.  C a l c u l a t i o n  o f  c r i t i ca l  stress 
Firstly, a model describing the elastic behaviour of 
the composite is introduced. Since formulae which 
are as simple as possible are preferred, the widely 
known composite-sphere model of Hashin [25] is 
adopted. This model is very suitable for this case, 
i.e. for investigating a composite consisting of iso- 
lated particles embedded in a matrix. The essential 
features of the composite-sphere model may be 
described as follows. The composite is thought to 
be composed of so-called composite spheres of  dif- 
ferent sizes. The radii of these spheres are chosen 
in such a manner that the volume of the body can 
be completely filled. Every composite sphere, in 
turn, is composed of a spherical particle encased 
by matrix material. Let R and R '  denote the radius 
of the particle and the outer radius of the sphere, 
respectively. Then 

v = (R/R') 3 (12) 

is the volume fraction of the particle of an 
individual composite sphere. It is always possible 
to choose values for R such that the "individual" 
volume fraction (Equation 12) is the same for all 
spheres and, moreover, v is equal to the given 
volume fraction of particles of  the composite. 
With these assumptions it can be shown that the 
elastic properties of the composite are equivalent 
to those of an individual composite sphere [25]. 

This paper is concerned with the matrix stress 
which arises if the matrix and the particle undergo 
different stress-free strains which may be due to a 
difference in the thermal expansion coefficients as 
well as to a phase transformation of the particles. 
Let (e~) p and (ei~) TM be the stress-free strains of 
the particles and the matrix, respectively. The case 
is restricted to isotropic transformation strains. 
Hence 

~ e ~  = (e~)  p ~eT~ ~" = - - \  i j ]  eT~ij (13) 

can be written. Then, within the composite-sphere 
model, the complete solution for the elastic stress 
fields in the composite can be derived. 

In this paper, however, only some particular 

results are given. With regard to the state prior to 
microcracking, stress concentrations due to differ- 
ent elastic moduli compared with those due to 
different stress-free strains since the latter seems 
more important may be neglected. That means, 
that it is possible to assume that the elastic proper, 
ties of particles and matrix are approximately 
identical (before microcracking): 

E p = E m = Eo; 
(14) 

r O = r  'm = V o .  

Here, E and v depict Young's modulus and Poisson's 
ratio, and the subscript "0"  refers to the compo- 
site elastic moduli. Then the matrix tangential 
stress in the vicinity of a particle is given by 

o~t (r) - 3(1 2 Vo---)Eo[l(R)3+v]e T, 

R < r < R' (15)  

where r denotes the distance from the centre of 
the particle. 

Later, in the more general case, the average 
matrix stress is also needed if there is a difference 
between Young's moduli of the particle and the 
matrix 

E p = E 0 E m = E; 
(16) 

u p = u m = Uo = 0.2. 

The value ~'0 = 0.2 has been chosen because it 
provides a lucid result. This is justified since there 
is not strong dependence on Poisson's ratio. Then 
the mean value of the matrix stress is obtained 

= f [(1 + e/E0) + v(1 -e/Eo)]  ~%"" 
(17) 

The following model describing the formation of 
microcracks may now be established. Microcracking 
is assumed to start if the maximum of the total 
tangential stress reaches the critical value Ome. 
Since the total stress is a simple superposition of 
applied and residual stresses given by Equation 15, 
we have 

2 
Omc ~- Oc + O~t (R)  = Oc -~ 3(1 - -  t)o) E0(�89 -~- v)eT '  

where, according to Equation 8, oe denotes the 
critical value of the applied stress necessary to 
induce microcracking. If this equation is solved 
for o c 
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os = 1 - - • ( I + 2 v ) x  (18) 
O'me 

is obtained, for the restricted case of Vo = 0.2. The 
dimensionless parameter X is a combination of 
material properties 

Eoe T 
X = - - .  (19) 

O'mc 

Hence, X may be looked upon as a measure of the 
residual stresses. 

Let us consider the case when the ceramic com- 
posite has been cooled from the fabrication tem- 
perature and the particles have undergone a phase 
transformation at a certain temperature connected 
with a linear expansion Ae w. In addition, take 
into account the different thermal expansion 
coefficients ~ and am of the particles and the 
matrix. Let T1 denote the temperature below 
which stresses are no longer relaxed. To is the 
ambient temperature. Then for e T 

6T = (0~m __oLp)(T1 __ To) + Ad'. (20) 

If we consider the tetragonal ~ monoclinic trans- 
formation of zirconia particles, Equations 13 and 
20 must be seen as approximations since that 
transformation is not perfectly isotropic. However, 
it does not seem to be justified to consider this 
anisotropy in full detail because we have already 
made some approximations of the same level. 

Finally, it should be mentioned that, in the 
literature, although one may find expressions for 
the tangential stress (Equation 15) which only 
take into account the case E p :r TM, there is 
usually another restriction since only one isolated 
particle in an infinite matrix is considered, i.e. 
v ~  0 (e.g. [7]). In this paper, however, Equation 
18 is used which describes the decrease of the 
critical stress dependent on the residual stresses as 
well as on the volume fraction v. 

3.2. Calculations of dissipated and stored 
energy 

Now attention is focused on the microcracks 
formed in the matrix. Let us assume that a large 
number of microcracks exist which are evenly 
dispersed in the matrix. Then the matrix, altbough 
containing microcracks, can be considered as a 
continuum described by effective elastic properties 

different from those of the uncracked matrix. This 
method allows us to calculate the specific dissipated 
energy rid as well as the change in stored energy 
(r/s--r/so) without looking into the details of  
microcrack propagation. To this end two stages are 
distinguished: 
(1) Before microcracking the matrix is homo- 

geneous and its Young's modulus is equal to 
the composite modulus (cf. Equation 14) 

E m = E0; 

(2) After microcracking the matrix is effectively 
homogeneous. The existence of microcracks, 

however, causes a decrease in Young'smodulus 
depending on the density of  microcracks 
(cf. Equation 16) 

E TM = E = E(p) < E o .  

In order to calculate the function E(p),  the self- 
consistent scheme, widely known in the theory of 
effective elastic constants, seems applicable because 
it can be assumed that a random spatial distribution 
of microcracks is realized. As usual, the self- 
consistent scheme results in implicit equations. 
With regard to Young's modulus, however, the 
results can be very satisfactorily approximated by 

E 
- - =  1--kp (21) 
Eo 

where k is a number which depends on the shape 
and orientation of the microcracks. Budiansky and 
O'Connell [26] applied the self-consistent scheme 
to a material containing microcracks. Their results 
for the case of randomly oriented penny-shaped 
cracks may be depicted by k = 2/9. The present 
authors [16] have investigated a two-dimensional 
array of plane parallel microcracks (k = rt/2). 

In this paper, penny-shaped cracks are con- 
sidered which are oriented preferably perpendicular 
to the applied stress, i.e, parallel to the macro- 
crack (cL Fig. 1).* A slight modification of the 
procedures in [16] or [26] yields 

k = 2/3. (22) 

Now the dissipated energy is calculated. To this 
end let us look at the stress-strain diagram of the 
matrix (Fig. 2). Prior to microcracking, loading is 
governed by Young's modulus Eo (Stage 1). After 
microcracking the material possesses the modulus 

*Obviously the matrix becomes anisotropic since there is a preferred orientation ofmicrocracks. In this case Equation 21 
gives the modulus in the direction perpendicular to the microcracks (i.e. the direction of applied stress). Since the 
behaviour concerning this direction seems to be of major importance, the anisotropy is neglected. 
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Figure 2 Stress-gtrain diagram of a material showing 
microcracking. 

E(p) (Stage 2). The transition between these two 
stages starts when the critical stress Ome is reached. 
The particular transition curve, however, will 
depend on the special features of the stochastic 
process of microcrack formation. From a detailed 
model of this stochastic process [24] it has been 
shown that a good approximation is provided by 
the assumption that the transition proceeds at con- 
stant stress (in a previous work [17] a sudden 
change in Young's modulus was assumed to occur, 
which seems, however, less realistic). Hence, the 
dissipated energy is given by the shaded area in 
Fig. 2 (considering that unloading is governed by E 
only) 

r/D---- ( 1 - - V )  ( l - - E / E o ) ]  j .  (23) 

The factor (1 --v) ,  i.e. the volume fraction of the 
matrix, arises because r/D is defined as the dissipated 
energy per unit sample volume whereas Fig. 2 
yields the energy per unit matrN volume. 

It is noted that r/D given by Equation 23 
comprises not only the energy converted into 
fracture surface energy of microcracks but also 
the dynamic energy emitted as elastic waves. This 
is obvious since the ratio E/Eo has been calculated 
from the loss of total potential energy of the 
material due to microcracking. Thus the same 
holds for r/D, As it is known, only at the beginning 
of crack extension is the loss of potential energy 
equal to the fracture surface work, otherwise the 
former energy exceeds the latter. 

Let us turn to the stored energy r/s, i.e. the 
elastic strain energy contained in the material 
in an unloaded state. At first a simple expression is 
derived which generally holds for a two-phase 
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composite. The specific stored energy is given by 
the volume average of  the local strain energy 

7/s �89 T) = 1 1 T (24) = 20ij  ~ij - -  2 aij Cij , 

where eij and e T denote the total strain and the 
stress-free strain. The first term on the right-hand 
side of Equation 24 can be transformed into a 
surface integral which vanishes since the surface 
tractions are zero; the second term may be 
simplified because e T is a given constant being 

T m  equal either to (e~) p or (eij) : 

7/s = --~ [vOP(e~j) p + (1 -- v)O~(ei~)m]. 

(25) 
Here, #i~ and #~ denote the volume averages with 
respect to the particles and the matrix. Since the 
average stress 0ij vanishes, the following equation 
holds 

Oij V#~ + (1 -- -m 
- = v)aij = 0. (26) 

Making use of Equation 26, oP can be eliminated 
from Equation 25 to obtain 

r/s �89 -m T P = - v)o~j  [(~j)  - (~)~] 
= �89 AeT. (27) 

This equation quite generally holds for a two- 
phase composite. Thus it is seen that it is sufficient 
to know only the average stress in one component 
of the composite in order to calculate the energy 
stored by residual stresses. 

In our case the average matrix stress, derived 
from the composite-sphere model, is given by 
Equation 17. Introducing Equations 13 and 17 into 
Equation 27 yields (remember ~ij~ij = ~ii = 3) 

E(eT) z 

r/s = ~v(1 - v )  (1 + E / & )  + v(1 --E/Eo)'  

(28) 
The energy ~/so, stored in the material before 
microcracking, may be easily calculated from 
Equation 28 if E is put equal to Eo. In this way 
the result 2 50"mc 

(r/s--r/s~ - 2 2Eo v ( 1 - - v )  

x [ (  1 -Q--E/E~ 1 

is obtained where the parameter X has been intro- 
duced, defined by Equation 19, which is a 
measure of residual stress. It is observed from 



Equation 29 that the change of stored energy can 
be expressed by the ratio E/Eo, i.e. the decrease 
of  the modulus connected with microcracking 
(cf. Equation21). Furthermore, (r/s--rls0) is 
negative, which means that stored energy is 
released. 

According to the general expression, Equation 
10, the fracture toughness depends on the sum 
(V/D + '/'/s - -  f/sO)" Hence, making use of Equations 
23, 29, 21 and 22, the results may be summarized 
as follows 

o2m~ 
rlD+ris--rlso = -~oog(p,v,x) 

where the function g is given by 

(30) 

g(o, v, X) = (1 - - v )  (1 --E/Eo) 
E/Eo 

[ ~/_ev\ x 

2 l+tT-~v)E/E~ J 
with 

E/Eo = 1- -~p .  (31) 

This set of equations describes the joint action of 
energy dissipation and release of stored energy 
as a function of the density of microcracks, the 
volume fraction of  particles and the residual 
stresses. A discussion of this result is postponed 
to Section 4. 

3.3. Effective fracture surface energy 
It may be seen from Equation 10 that there is 
only one unknown quantity left. This is the ratio 
7/70, where 7 denotes the effective fracture surface 
energy actually consumed in the process zone (i.e. 
the zone directly ahead of the crack tip) and 7o is 
the tree fracture surface energy of the material 
which would be relevant if there were no structural 
changes resulting from microcracking. 

Since the macrocrack may absorb a number of  
microcracks when it grows, only a reduced amount 
of fracture surface has to be created. Thus micro- 
cracking mainly results in a ratio 7/70 < 1. On the 
other hand microcracks may cause branching, 
wandering or twisting of the crack front (cf. 
Wu etal. [27]) which increases 3- That means, 
even if the macrocrack path was known, it would 
be a very complicated geometrical problem to 
derive a simple formula for 7/70. 

In addition to these geometrical problems we 
should contemplate that the extension of the 
macrocrack may be connected to release of stored 

energy which is not comprised by (r  h -  r/so ) in 
Equation 10 or 29. Although this additional 
amount of available energy may lead to a decrease 
in the effective fracture surface energy 7, it can be 
assumed that the main part of the stored energy 
has already been released when the dissipation 
zone has developed. Hence the remaining part of  
stored energy which might be released by the 
propagating macrocrack in the process zone is 
neglected. 

The present paper is restricted to the case of 
the effective fracture surface energy 7 being 
mainly dependent on the reduction of fracture 
surface to be created (as discussed above). Let dX 
denote that part of  the total fracture surface 
which is contributed to (per unit thickness) by 
the microcracks when the macrocrack grows 
by a distance dl. The area dX requires no fracture 
work whereas the remaining part of the material 
consumes the specific work 70. Therefore 7 may 
be expressed by 

7 = 70 1 - -  . (32) 

Suppose that the process zone has a width 2p, i.e. 
all the microcracks situated in a strip of width 
2p are absorbed by the macrocrack. Then the 
number dN of microcracks absorbed per unit 
thickness when the macrocrack extends by dl is 
given by 

2p 
dN = ~1/~. 2p dl = (2a) 3 p dl (33) 

where N denotes the number of  microcracks per 
unit volume (cf. Equation 11). Every microcrack 
contributes an amount rra 2 to the free surface dX. 
Thus, 

dX = n'a 2 dJ~.. (34) 

Combining Equations 32, 33 and 34 one finally 
obtains 

7/7o = 1 - -~p  (35) 
with 

7rp 
/3 = -- --. (36) 

4 a  

Equation 35 enables us to calculate the ratio 7/3'o 
dependent on the density p of microcracks. The 
width 2p of the process zone may be measured by 
the roughness of the fracture surface, p should 
expected to be of the order of a. Therefore the 
range of possible/3-values can be estimated as 

0 <~ /3 <~ 2. (37) 

In the present paper 13 is regarded as a parameter 

701 



which assumes characteristic values for different 
classes of materials. For example, materials with a 
laminated structure may show low values of/3. The 
influence of/3 on the macroscopic fracture tough- 
ness is discussed in the next Section. 

4. Results and discussion 
In order to summarize the results Equation 30 is 
introduced into the general expression,Equation 10. 
Thus we obtain the normalized fracture toughness 

Ge 3'/')'0 
= l _ l r g ( p , v , •  I (38) 23"0 

3 2 / 

Three functions, having been calculated in the 
preceding section, enter into this relation: the ratio 
of  fracture surface energies 3'/3'0, the function g 
representing the joint action of energy dissipation 
and release of stored energy, and the ratio Oe/Ome 

describing the decrease of the critical stress caused 
by residual stresses. These functions are given by 
Equations 35, 31 and 18 respectively. Thus the 
fracture toughness is a function of the density P 
of microcracks (created in the dissipation zone), 
the volume fraction v of particles and the residual 
stress X. To illustrate the results let us first consider 
a single-phase ceramic with negligible residual 
stresses (v = 0, X = 0). Suppose that stable micro- 
cracking is possible. In this case Equations 31 and 
18 reduce to 

g = g(p,O,O)= / (1--E/Eo] 
E/Eo ] \ 

with 
E/Eo = (1 - -~p)  (39) 

and oe 
- -  1 .  

O m e  

The resulting fracture toughness is plotted in 
Fig. 3 for different values of the process zone 
parameter /3.* The curves show that an increase 
in G e can be expected for low values of/3 and a 
sufficiently high microcrack density p. As discussed 
above this case could be realized in materials with 
a laminated structure. Normally, however, it is a 
very complicated task to obtain a sufficiently high 
microcrack density because the matrix may become 
unstable if P exceeds a certain critical value Pc. 

Contrary to the Griffith-type instability of the 
macrocrack, instability of the matrix simply means 

that the microcracks coalesce and large cracks 
are formed. This implies 3' -+ 0 and, accordingly, 
Ge -+ 0 (such a critical value Pe is frequently 
called the "percolation point"). An analytical 
description of the percolation process is not yet 
available. Henceforth Pc is seen as a material- 
dependent constant. For p < Pe Equation 38 holds 
whereas for p > Pe a drop in the fracture toughness 
may be expected. 

To conclude the discussion of Fig. 3, it is noted 
that there is another restriction on Equation 38 
since, apparently, the toughness becomes infinite 
at a certain microcrack density; this is not a 
real result  since the assumption of a small dissi- 
pation zone is violated if G e becomes too large (cf. 
Equation 8). Hence we may state that the theory 
yields quantitative conditions which must be met 
to increase the fracture toughness by microcracking, 
yet a precise prediction of the exact value of the 
toughness should not be expected. 

We now tum to the case of existing residual 
stresses, i.e. X = EoeT/ome > 0. Although the value 
of g in Equation 38 is lowered by the release of  
stored energy, the simultaneous decrease of 
Oe/Ome, leading to a large dissipation zone, over- 
compensates for this. Thus, residual stresses result in 
an increase in the fracture toughness. Fig. 4 
presents numerical results for the toughness 
dependent on p and X (the volume fraction v and 
the process zone parameter/~ are kept constant). 
The curves in Fig. 4 show that the increase in G e 
is shifted to lower values of the microcrack density 
p if X is raised. Moreover, the influence of/3 is 
much less pronounced than in Fig. 3. Therefore it 
seems easier to realize a sufficiently high micro- 
crack density without exceeding the critical 
density Pc. There is, however, an upper limit for 
the residual stress which may be estimated from 
Equation 18 12( 1 1 

X < -~-\l-"-+-~v ]" (40) 

If X exceeds this limit, the critical stress oc 
becomes zero. This fact simply implies that micro- 
cracking occurs before loading starts, thus an 
increase of the fracture toughnessbymicrocracking 
is impossible. In this way the theory shows that 
the residual stresses must be carefully adjusted by 
an appropriate choice of the components of the 
ceramic composite. 

*These results are essentially the same as those published in a previous work [17]. There are only slight differences 
since, in that paper, we used a two-dimensional model instead of the penny-shaped cracks considered here. Additionally, 
in [ 17 ], an attempt was made to analytically describe the coalescence of  microcraeks. 
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Figure 3 Fracture toughness as a function of microcrack density for varying widths of the process zone (vanishing 
residual stresses). 

Finally, we compare the theoretical results with 
the experimental investigation of Claussen [7, 8]. 
Claussen found that the fracture toughness of  
alumina may be considerably raised when small 
unstabilized zirconia particles are added to the 
alumina. It was supposed by Claussen that the 
toughening is due to the formation of microcracks. 

In the following we try to explain Claussen's 
results within the framework of the present model. 
Remember that zirconia particles undergo a 
martensitic phase transformation. According to 
Claussen [7] a stress-free strain e T of about 
1.6% (including the thermal expansion mismatch) 
has to be used for the calculations (cf. Equation 
20). The critical stress Omc may be estimated 

t -  1~1/2 where ao denotes from the relation O'me ~ ~XeO/,, 0 
the size of  the flaws which are the starting points 
of  the microcracks and Keo is the critical stress 
intensity factor governing the propagation of 
microcracks in the alumina matrix. A reasonable 
choice is Kco = 5MPam 1/2 and ao = 1/~m. This 

results in amc ~ 5000 MPa. Since E 0 ~ 390 GPa, 
and X~  1.2 (cf. with Equation 19). This is, of 
course, only a rough estimate, nevertheless one 
should expect that X lies between 1 and 2. 

Let us assume that every zirconia particle 
creates a certain number ofmicrocracks. Using the 
definitions of the microcrack density p and the 
volume fraction v of  zirconia particles, the follow- 
ing relationship between p and v is obtained 

p = f(1--~-vv) with f =  48n(D)~Tr (41) 

The constant f is proportional to the number n of  
microcracks per particle and the ratio (a /D)  3 

where a is the radius of the microcracks and D is 
the diameter of the particles, With the help of  
Equation 41 the fracture toughness, Equation 38, 
may he calculated depending on the volume 
fraction v. The results are shown in Fig. 5. Follow- 
ing Claussen the critical stress intensity factor Ke 
which may be derived immediately from Ge has 
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Figure 4 Fracture toughness as a function of  microcrack density for varying residual stresses. 

v=O,! 

/3 --o,s 

/.2 l.g 

.been plotted 
Ke =( Gel ~. (42) 

Kco \ 2vo ] 
The constant f (cf. Equation 41) has been fitted 
to the experimental results of Claussen [8] which 
are also shown in Fig. 5; f~values have been obtained 
as depicted in Fig. 5. Expectedly,f depends on the 
diameter D of the zirconia particles. The resulting 
relationship between f and D can be approximate- 
ly described by the relation f~D 3/~ which is 
equivalent to a 2 ~ D 3. At this point more detailed 
investigations are needed; this will be the subject 
of future work. 

Fig, 5 shows that the increase of  toughness is 
predicted fairly well by our theory, Above a certain 
volume fraction, however, the fracture toughness 
decreases suddenly. This may be explained by the 
assumption of a critical microcrack density Pe as 
discussed in connection with Fig. 3. According to 
these considerations the plot in Fig. 5 contains 
the theoretical curve for the fracture toughness 
depending on the v61ume fraction with p = Pe being 
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kept constant. The value Pe = 0.48, independent 
of the particle size, yields the best correspondence 
between the theoretical and experimental results. 
Thus the maximum fracture toughness can also be 
predicted by theory. 

It has been the main objective of  this paper to 
understand how the fracture toughness can be 
raised by utilizing energy dissipative mechanisms 
and which role is played by the different micro- 
structural parameters such as microcrack density, 
residual stresses and so on. It has been shown that 
theoretical considerations may be successfully 
applied in order to derive the conditions which 
must be met if the fracture toughness is to be 
improved. There are, of course, some unsolved 
problems. On what the microcrack density, Pc, 
depends and in which way Pc can be changed are 
both important questions since a small Pc value 
results in poor values of the toughness and the 
energy-dissipative mechanism cannot be utilized. 

There is another condition that must be met if 
the fracture toughness is to be increased by energy 
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Figure 5 Comparison between theoretical and experimental results for a ceramic system consisting of an alumina matrix 
with zirconia particles embedded in it. 

dissipation. Namely, the dissipation zone must be 
sufficiently large. Apparently, our final results do 
not depend on the absolute value o f r o .  However, 
in deriving the theoretical relations, it has been 
assumed that the dissipation zone contains a large 
number of  microcracks and that there is a clear 
distinction between the dissipation zone and the 
process zone. The validity o f  this assumption with 
respect to a particular material m a y  be checked 
using Equation 8. I f  ro  is of  the order o f  the 
microcrack size a, then our model is not applicable 
and a more detailed investigation is necessary. 

For example let us consider the strength o f  
such ceramics. As usual the largest flaw existing 
inside the material will determine the fracture stress. 
I f  this flaw is very small, then ro  will be o f  the 

same size and the model is not applicable. On the 
contrary, if the strength is governed by large flaws, 
the energy-dissipative mechanism can be working, 
and strength increases with toughness. Thus it has 
turned out that strength and fracture toughness do 
not necessarily show the same behaviour. 

In summary it may be stated that the theory 
enables the derivation of  conditions which lead to 
an increase of  the fracture toughness. The influence 
o f  residual stresses has especially been discussed. 
Although we have restricted ourselves to the case 
o f  energy dissipation by microcracking, other 
energy-dissipative mechanisms like the stress- 
induced phase transformation may be dealt with 
along the same lines. This will be a subject o f  
future work. 
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